Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis.

نویسندگان

  • Joe B Blumer
  • L Judson Chandler
  • Stephen M Lanier
چکیده

Activator of G-protein signaling 3 (AGS3) and LGN have a similar domain structure and contain four G-protein regulatory motifs that serve as anchors for the binding of the GDP-bound conformation of specific G-protein alpha subunits. As an initial approach to define further the different functional roles of AGS3 and LGN, we determined their expression profile and subcellular distribution. AGS3- and LGN-specific antisera indicated a widespread tissue distribution of LGN, whereas AGS3 is primarily enriched in brain. Brain punch biopsies of 13 discrete brain regions indicated that both AGS3 and LGN are expressed in all areas tested but are differentially regulated during development. LGN is expressed in neuronal, astroglial, and microglial cultures, whereas AGS3 expression is restricted to neurons. In primary neuronal cultures as well as in dividing cultures of PC12 cells, immunocytochemistry indicated distinct subcellular locations of AGS3 and LGN. The subcellular locations of the two proteins were differentially regulated by external stimuli and the cell cycle. In PC12 and COS7 cells, LGN moves from the nucleus to the midbody structure separating daughter cells during the later stages of mitosis, suggesting a role for G-proteins in cytokinesis. Thus, although AGS3 and LGN share a similar overall motif structure and both bind G-proteins, nature has endowed these proteins with different regulatory elements that allow functional diversity by virtue of tissue-specific expression and subcellular positioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric localization of LGN but not AGS3, two homologs of Drosophila pins, in dividing human neural progenitor cells.

Human neural progenitor cells (hNPCs) can be recovered from postmortem human brains and used to study the molecular basis of neurogenesis. Human NPCs are being used to investigate the molecular basis of cell fate determination during stem cell divisions, based on comparison with the Drosophila model system. Drosophila neuroblasts and sensory organ precursors undergo well-defined asymmetric cell...

متن کامل

The presence of a Leu-Gly-Asn repeat-enriched protein (LGN), a putative binding partner of transducin, in ROD photoreceptors.

PURPOSE Heterotrimeric G proteins are regulated by receptors that act as guanine nucleotide exchange factors (GEFs) and by RGS proteins, which act as guanosine triphosphatase (GTPase) activating proteins (GAPs). Guanosine diphosphate (GDP) dissociation inhibitors (GDIs), such as activators of G protein signaling (AGS)-1 and -3 and Leu-Gly-Asn repeat-enriched (LGN) proteins regulate the Gi famil...

متن کامل

Resistance to Inhibitors of Cholinesterase (Ric)-8A and Gαi Contribute to Cytokinesis Abscission by Controlling Vacuolar Protein-Sorting (Vps)34 Activity

Resistance to inhibitors of cholinesterase (Ric)-8A is a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13, which is implicated in cell signaling and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes. Ric-8A, Gαi subunits, and their regulators are localized at the midbody prior to abscission and linked to the final stages of ...

متن کامل

Localization of Giα proteins in the centrosomes and at the midbody: implication for their role in cell division

At the plasma membrane, heterotrimeric G proteins act as molecular switches to relay signals from G protein-coupled receptors; however, G(alpha) subunits also have receptor-independent functions at intracellular sites. Regulator of G protein signaling (RGS) 14, which enhances the intrinsic GTPase activity of G(ialpha) proteins, localizes in centrosomes, which suggests the coexpression of G(ialp...

متن کامل

Evidence for dynein and astral microtubule–mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells

Spindle positioning is believed to be governed by the interaction between astral microtubules and the cell cortex and involve cortically anchored motor protein dynein. How dynein is recruited to and regulated at the cell cortex to generate forces on astral microtubules is not clear. Here we show that mammalian homologue of Drosophila Pins (Partner of Inscuteable) (LGN), a Gαi-binding protein th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 18  شماره 

صفحات  -

تاریخ انتشار 2002